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Stationary correlations for a far-from-equilibrium spin chain
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A kinetic one-dimensional Ising model on a ring evolves according to a generalization of Glauber rates, such
that spins at even~odd! lattice sites experience a temperatureTe (To). Detailed balance is violated so that the
spin chain settles into anonequilibriumstationary state, characterized by multiple interactions of increasing
range and spin order. We derive the equations of motion forarbitrary correlation functions and solve them to
obtain an exact representation of the steady state. Two nontrivial amplitudes reflect the sublattice symmetries;
otherwise, correlations decay exponentially, modulo the periodicity of the ring. In the long-chain limit, they
factorize into products of two-point functions, in precise analogy to the equilibrium Ising chain. The exact
solution confirms the expectation, based on simulations and renormalization group arguments, that the long-
time, long-distance behavior of this two-temperature model is Ising-like, in spite of the apparent complexity of
the stationary distribution.
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I. INTRODUCTION

Exact solutions of simple model systems play a key r
in statistical mechanics. They provide reliable quantitat
information about regular as well as singular behavior, a
serve as proving grounds for approximation schemes. M
over, they can set important pointers in areas where a gen
theoretical framework is still lacking. A prime example is th
study of nonequilibrium stationary states~NESS!. Similar to
systems in thermal equilibrium, NESS are characterized
time-independent macroscopic observables; however
present these can only be computedwith explicit referenceto
the imposed dynamics. There is, as yet, no equivalent of
Gibbs ensemble theory for far-from-equilibrium stea
states. As a consequence, most progress to date is mad
studying specific models.

Since the Ising model@1# is one of the most intimately
known interacting many-particle systems, many nonequi
rium models depart from it by imposing an external for
that drives the system out of equilibrium. Examples inclu
couplings to multiple heat baths@2–4#, competing Glauber
and Kawasaki dynamics@5#, or a current-inducing globa
bias @6#. In all of these models, reviewed in Ref.@7#, the
nonequilibrium perturbation violates the detailed balan
symmetry of the equilibrium dynamics. On large time a
length scales, one can probe how this affectsuniversalbe-
havior, or, adopting a more microscopic but no less fun
mental perspective, one can ask hownonuniversalproper-
ties, such as the exact configurational probabilities,
modified. One finds, generically, that nonequilibrium forc
have especially profound effects if~i! they couple to the bulk
rather than the boundaries@8,9# of the system@10#, and ~ii !
the dynamics satisfies a conservation law@11–13#. For ex-
ample, Ising lattice gases withconservedparticle number can
be driven into two distinct nonequilibrium universalit
classes, depending on the symmetries of the external fo
@6,11#. In contrast, Ising-like systems withnonconserveddy-
namics remain in the universality class of the equilibriu
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Ising model, even if the usualZ2 symmetry of the Ising
model is broken@14#. Even then, however, the violation o
detailed balance leads to fundamental changes in the
figurational probabilities, which must be identified and inte
preted before we may hope to formalize our understandin
NESS. It is here that exact solutions are expected to be m
helpful.

Motivated by these considerations, we recently@15# in-
vestigated a very simple nonequilibrium Ising-like mod
namely, a one-dimensionalinteractingspin chain with spin-
flip dynamics coupled totwo temperature baths. The rates a
a simple, but nontrivial generalization of the familia
Glauber@16# rates: spins at odd~even! sites are coupled to a
temperatureTo (Te). In two dimensions, this model@3,4#
exhibits an order-disorder phase transition that belongs to
Ising class, according to renormalization group argume
@14# and Monte Carlo simulations@4#. In one dimension, the
two-spin correlation function can be calculated exactly@17#.
Its only singularity lies atTo5Te50, so that the lower criti-
cal dimension isd51. Seeking an expression for the stea
state, we solved the master equation perturbatively, in
expansion in the temperaturedifference of the two heat
baths, up to and including second-order terms@15#. To our
surprise, the full stationary distribution turned out to
rather complex. At each order, additional spin operators
pear, characterized by longer spatial range interactions
higher-order spin products, and lower-order coupling co
stants acquire corrections. So, at first order, one encoun
next-nearest-neighbor pair interactions, while at second
der, two new terms appear: a next-next-nearest-neighbor
interaction and a four-spin interaction spanning four near
neighbor sites. All of these are allowed by symmetry, a
none allowed by symmetry are absent. Given this struct
one can, at least in principle, extrapolate to higher order
perturbation theory.

Of course, these findings immediately raise an obvio
question: how does this relatively complicated stationary d
tribution generate long-wavelength behavior in the Ising u
©2002 The American Physical Society30-1
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versality class? In this paper, we pursue an alternate r
towards the answer. Instead of aiming for the stationary s
directly, we seek its representation in terms of correlat
functions—since the knowledge of all stationary correlat
functions is equivalent to knowing the steady state. Star
from the master equation, we derive a hierarchy of equati
of motion for correlation functions of arbitrary numbers
spins. Ind51, this hierarchy is closed and soluble. Rema
ably, we find that—in contrast to the apparent complexity
the stationary distribution itself—the correlation functio
are very simple. Apart from two nontrivial amplitudes th
reflect the temperature difference between the two sub
tices, the structure of correlations iscompletely analogousto
the equilibrium Ising model. Specifically, forN→`, arbi-
trary ~even! m-point correlation functions factorize into
product ofm/2 two-point correlations. Of course, all corre
lation functions involving an odd number of spins vanish
symmetry.

While some exact analytic results for steady-state dis
butions are available, they are confined to three classe
systems. First, one-dimensional lattice gas models, restri
to excluded volume interactions, such as the asymmetric
clusion process and its relatives@18–20#; second, very spe
cial one-dimensional spin systems whose master equa
are solved by the Ising Boltzmann factor@6,21,22#; and third,
interacting systems in one or two dimensions onvery small
lattices so that the number of degrees of freedom rem
manageable@23#. To the best of our knowledge, the wor
presented here is amongst the first complete solutions
nonequilibrium stationary states with nontrivial~nearest-
neighbor! interactions and arbitrary number of degrees
freedom.

The paper is organized as follows. We first introduce o
model and its master equation. Next, we derive the equat
of motion for arbitrary correlation functions. Following
brief review of the solution@17# for the two-point correlation
function, we show how four-point correlations can be fact
ized into two-point correlations in the long chain (N→`)
limit. We then postulate thatall correlation functions factor-
ize in this manner, and show that this factorization solves
equations of motion. In the Appendix, we generalize t
solution to finite systems with periodic boundary condition
We conclude with some comments and open questions.

II. THE MODEL

Our model is defined on a one-dimensional ring, with
even numberN of sites, and periodic boundary conditions.
spin variable,s i561, denotes the value of the spin at sitei,
and nearest-neighbor spins interact according to the u
Ising Hamiltonian

H52J(
i

s is i 11 , ~1!

with an exchange couplingJ. The dynamics is a nonequilib
rium generalization of the usual Glauber model@16#: spins
on even and odd lattice sites experiencedifferent tempera-
tures, Te and To . Specifically, a configuration$s%
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5$s1,s2, . . . ,sN% evolves into a new configuration by flip
ping a randomly selected spins i with a rate@17#

wi~s i→2s i !512
g i

2
s i~s i 211s i 11!, ~2!

where

g i5H ge5tanh~2J/kBTe!, i even

go5tanh~2J/kBTo!, i odd.
~3!

Thus, the full time-dependent configurational probabil
p($s%;t) evolves according to a master equation,

] tp~$s%;t !5(
i 51

N

@2wi~s i→2s i !p~$s%;t !

1wi~2s i→s i !p~$s [ i ]%;t !#, ~4!

where $s [ i ]% differs from $s% by a flip of the i th spin. A
trivial time scale has been set to unity, and we use dim
sionless units for inverse temperature, i.e.,be[J/(kB Te),
etc.

Our goal in the following is to find a representatio
for the stationary solution of Eq. ~4!, q($s%)
[ limt→`p($s%;t). This limit is unique, since Eq.~4! is er-
godic: every configuration$s% can be reached in finite time
from every other configuration$s8% ~unlessTe5To50).
For equal temperaturesT[Te5To , the steady-state is jus
the ~canonical! distribution for the Ising chain,

qo~$s%!5
1

Z
exp~2H/kBT!. ~5!

It is of course straightforward to compute arbitrary corr
lation functions for the equilibrium Ising chain. Since th
Ising model is invariant under a global spin flip (Z2 symme-
try!, only correlations ofevennumbers of spins are nonzero
and are easily expressed in terms of the parametev̄
5tanh(J/kBT). Of course, we may—and always will—orde
the arguments of anm-point correlation function (m even!
without loss of generality, such that 1<k1,k2,•••,km
<N. Then, in theN→` limit one finds easily,

^sk1
•••skm

&eq5v̄ (k22k1)1(k42k3)1•••1(km2km21)

5^sk1
sk2

&eq^sk3
sk4

&eq
•••^skm21

skm
&eq

for m even andN→`, ~6!

i.e., a general correlation function factorizes into a produc
two-point functions.

We now turn to the nonequilibrium model, characteriz
by different temperatures TeÞTo . The associated stationar
state violates detailed balance@15# and differs from the Bolt-
zmann distribution, Eq.~5!. The degree to which detaile
balance is violated can be measured by the parameted
[(go2ge)/2. Similar to the Ising model, the stationary sta
is invariant under a global spin flip (Z2). As a consequence
0-2
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all stationary correlations of an odd number of spins van
identically, and again, only even correlations need to be
cussed. We also note the symmetry under translations bn
lattice sites,Tn , combined withd→2d if n is odd:

q~$s%;d!5q~$2s%;d!, ~7!

q~$s%;d!5q~Tn$s%;~21!nd!.

While a direct exact solution of the master equation h
proven elusive, a perturbative calculation, in powers ofd,
shows@15# that the stationary distribution for this nonequ
librium model is rather complicated, with longer-range a
higher-order spin operators appearing. Specifically, writ
q($s%)[ Z̃21exp@V($s%)#, we find that the potential function
V($s%), to second order ind, has the form

V~$s%!5b̄(
i

s is i 111dl(
i

~21! i s is i 12

12~dl!2(
i

@s is i 121s is i 11s i 12s i 13

2coth~2b̄ !~s is i 111s is i 13!#, ~8!

where tanh(2b̄)[(ge1go)/2 andl52 1
8 sinh(4b̄). An analy-

sis of the structure of the perturbation series indicates tha
each order, additional spin operators appear, consistin
spatially longer-range interactions and higher-order s
products. It is therefore quite remarkable that the correla
functions turn out to be very similar to those of the Isi
model, as we now proceed to show.

III. EQUATIONS OF MOTION FOR ARBITRARY
CORRELATION FUNCTIONS

We begin by deriving the equations of motion for arb
trary time-dependentm-point spin correlation functions
^sk1

sk2
•••skm

& t , starting from the master equation:

] t^sk1
sk2

•••skm
& t

5(
i 51

N H(
$s%

sk1
sk2

•••skm
@2wi~s i→2s i !p~$s%;t !

1wi~2s i→s i !p~$s [ i ]%;t !#J .

Here, the subscript̂+& t will be used to distinguish the time
dependent averages from their stationary limits,^+&
[ limt→`^+& t . Due to the sum over all configurations, the$%
bracket on the right-hand side obviously vanishes for all s
i, which do not belong to the set$k1 ,k2 , . . . ,km%, and one
finds easily that

] t^sk1
sk2

•••skm
& t

522(
i 51

m

^sk1
sk2

•••skm
wki

~ski
→2ski

!& t .
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Inserting Eq. ~2! for wki
(ski

→2ski
) and taking the

infinite time limit, we obtain the equations satisfied by t
stationary correlation functions, limt→`^sk1

sk2
•••skm

& t

[^sk1
sk2

•••skm
&:

0522m^sk1
sk2

•••skm
&

1(
i 51

m

gki
^sk1

•••ski 21
~ski111ski21!ski 11

•••skm
&.

~9!

As mentioned before, all stationary correlations of odd nu
bers of spins are trivially zero, and we need to focus only
the case of evenm. Moreover, all stationary correlations ar
translationally invariant, modulo the sublattice structu
As in the Glauber model@24#, the hierarchy of correlation
functions is closed; the equation form-point correlations
does not involve any higher correlations, and it is homo
neous, provided there are no nearest-neighbor pairs am
the arguments. Otherwise, them-point correlations couple to
lower correlation functions, which appear as inhomoge
ities. In the following section, we motivate an ansatz f
^sk1

sk2
•••skm

&, and then show that it satisfies Eq.~9! for

any choice of$k1 ,k2 , . . . ,km%.

IV. EXACT SOLUTIONS FOR STATIONARY
CORRELATIONS

To establish several key relations, we briefly review t
exact solution for the two-point functionŝs is j& @17#. For
this case, Eq.~9! reads

0524^s is j&1g i^~s i 111s i 21!s j&

1g j^s i~s j 111s j 21!&. ~10!

For nearest-neighbor sites, e.g.,j 5 i 11, this equation be-
comes inhomogeneous:

0524^s is i 11&1g i^s i 21s i 11&1g i 11^s is i 12&1g i

1g i 11 . ~11!

For simplicity, we restrict the discussion in this section
correlation functions in the thermodynamic limitN→`.
Thus we may label the lattice sites by the integers,i PZ.
Correlations on finite periodic chains and some details
the N→` limit will be addressed in the Appendix. Follow
ing Ref. @17#, it is easy to show that the solution is uniqu
and takes the form~for i , j , without loss of generality!

^s i s j&5AAi Aj v j 2 i , ~12!

with the spatial decay length controlled by the parameter

v5
1

Agego

~12A12gego!. ~13!
0-3
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The key difference to the equilibrium Ising model is th
emergence oftwo amplitudes, to match the sublattice sym
metries, namely,

Ai[H Ae5~ge1go!/~2go!, i even

Ao5~ge1go!/~2ge!, i odd.
~14!

For later reference, we note that these relations imply a
ther identity forproductsof pair correlations, namely, for an
i , j , j 11, l ,

05~g j1g j 11! ^s i s l&2g j ^s i s j 11& ^s j 11 s l&

2g j 11 ^s i s j& ^s j s l&. ~15!

This relation will be needed in the discussion of four-po
functions.

It is quite remarkable that the three quantitiesv, Ae , and
Ao also determine all higher correlation functions, throug
structure that is almost perfectly analogous to the equi
rium case. Deferring the case of finiteN to the Appendix, we
consider only an infinite chain here. Focusing on even c
relations, we assert that arbitrarym-point correlation func-
tions, withk1,k2,•••,km andm even, are given by

^sk1
•••skm

&

5AAk1
Ak2

•••Akm
v (k22k1)1(k42k3)1•••1(km2km21)

5^sk1
sk2

&^sk3
sk4

&•••^skm21
skm

&, ~16!

i.e., higher correlation functions factorize into two-spin co
relations as in the equilibrium case, Eq.~6!. However, two
features distinguish these correlations from their equilibri
counterparts. First, the spatial dependence is controlled
different parameter,v. In analogy tov̄ for the equilibrium
system,v defines aneffective temperaturefor the nonequi-
librium system, viav[tanh(J/kBTeff). Teff diverges withTo
or Te but vanishes only if bothTo and Te go to zero. As a
result, the correlation lengthj, defined via lnv[2j21, di-
verges only ifboth temperatures vanish. Second, and m
importantly, we note the appearance of the even/odd am
tudesAe , Ao , reflecting the sublattice identities of the tw
spins. These amplitudes carry the primary information ab
the nonequilibrium nature of our dynamics.

Before turning to a general proof of Eq.~16!, it is instruc-
tive to confirm it explicitly for the four-point functions. In
this case, factorization implies
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^s is jsks l&5^s is j&^sks l& ~17!

for i , j ,k, l . When inserting this ansatz into the righ
hand side of Eq.~9!, we need to distinguish whetherj andk
are nearest-neighbor sites or not. Ifk. j 11, we obtain

28^s is jsks l&1g i^~s i 111s i 21!s jsks l&

1g j^s i~s j 111s j 21!sks l&

1gk^s is j~sk111sk21!s l&1g l^s is jsk~s l 111s l 21!&

5@24^s is j&1g i^~s i 111s i 21!s j&

1g j^s i~s j 111s j 21!&#^sks l&1@24^sks l&

1gk^~sk111sk21!s l&1g l^s jsk~s l 111s l 21!&#

3^s is j&50, ~17a!

since the expressions in the square brackets vanish for
stationary two-point functions, by virtue of Eq.~10! or ~11!,
depending on whether (i , j ) or (k,l ) are nearest neighbors o
not. If k5 j 11, we need to consider a slightly differen
equation, namely,

28^s is js j 11s l&1g i^~s i 111s i 21!s js j 11s l&

1g j^s i~s j 111s j 21!s j 11s l&

1g j 11^s is j~s j 121s j !s l&1g l^s is js j 11~s l 11

1s l 21!&5@24^s is j&1g i^~s i 111s i 21!s j&

1g j^s is j 21&#^s j 11s l&1g j^s is l&1^s is j&

3@24^s j 11s l&1g j 11^s j 12s l&1g l^s j 11~s l 11

1s l 21!&#1g j 11^s is l&5g j^s is l&1g j 11^s is l&

2g j^s is j 11&^s j 11s l&2g j 11^s is j&^s js l&50.

~17b!

The last equality follows from Eq.~15!.
The proof is completed by induction. Assuming that t

factorization has been proven for (m22)-point functions, it
is sufficient to show that the ansatz

^sk1
•••skm

&5^sk1
•••skm22

&^skm21
skm

& ~18!

solves the equations of motion for them-point functions.
Again, we need to distinguish whetherkm22 and km21 are
nearest neighbors or not. If they are separated by more
one lattice spacing, i.e., ifkm21.km2211, we have
two- and
22m^sk1
sk2

•••skm
&1(

i 51

m

gki
^sk1

•••ski 21
~ski111ski21!ski 11

•••skm
&

5^skm21
skm

&[ 22~m22!^sk1
•••skm22

&1 (
i 51

m22

gki
^sk1

•••ski 21
~ski111ski21!ski 11

•••skm22
&]

1^sk1
•••skm22

&@22^skm21
skm

&1gkm21
^~skm21111skm2121!skm

&1gkm
^skm21

~skm111skm21!&#50. ~18a!

Here, we have used the fact that both square brackets vanish, since they enclose the equations of motion for the
0-4
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(m22)-point functions, respectively. Next, we consider the casekm215km2211. Again, we add and subtract the term
missing from the full equations of motion of the lower correlations functions:

22m^sk1
sk2

•••skm
&1(

i 51

m

gki
^sk1

•••ski 21
~ski111ski21!ski 11

•••skm
&

52gkm22
^sk1

•••skm23
skm2211&^skm21

skm
&1gkm22

^sk1
•••skm23

skm
&2gkm21

^sk1
•••skm22

&^skm2121skm
&

1gkm21
^sk1

•••skm23
skm

&5^sk1
•••skm24

&$~gkm22
1gkm21

!^skm23
skm

&2gkm22
^skm23

skm2211&^skm21
skm

&

2gkm21
^skm23

skm22
&^skm2121skm

&%50. ~18b!
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To obtain the last two identities, we have factored out
(m24)-point correlation, and used Eq.~15!. This concludes
the proof. We emphasize again that the conditionN@1 has
been imposed for reasons of simplicity alone: expressions
arbitrary correlation functions onfinite rings, while some-
what more cumbersome, are easily derived and also fol
the Ising pattern, as we will show in the Appendix.

Finally, we discuss one special case of the tw
temperature Glauber dynamics where the two-point corr
tions do not have the form of Eq.~12!. This is the case if one
of the two parametersge , go is zero, the other finite, i.e., th
temperature of one sublattice is infinite. Without loss of ge
erality we assumego50 in the following. One can then
easily show directly from the equation of motion~10! that
the two-point function reads

^s i s j&[ H ge/4 if j 2 i 51

ge
2/8 if j 2 i 52 and i even

0 otherwise.

~19!

Hence, spins are only correlated over a distance of at m
two lattice sites. Turning to the higher correlations, we o
serve that Eq.~15! also holds for these parameter value
Therefore,m-point correlations (m even! again factorize into
two-point correlations.

V. CONCLUSIONS

To summarize, we have found an exact solution for
stationary correlation functions of a one-dimensional n
equilibrium Ising spin chain with an even numberN of sites.
The system is globally coupled to two temperature ba
spins on odd~even! lattice sites experience a temperatureTo
(Te) and flip according to a generalization of the famili
Glauber rates. The presence of two different temperatu
violates detailed balance and maintains a nontrivial none
librium stationary state. The complete set of correlation fu
tions provides us with the full, exact solution for this stea
state. This allows us to reconcile two potentially contrad
tory earlier findings: while simulations and renormalizati
group arguments indicate that the long-wavelength beha
of nonconserved two-temperature models should be Is
like, a perturbative analysis of the stationary distributi
q($s%) showed that a large number oflong-range and mul-
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tispin interactions are present in lnq($s%). Here, we have
shown that the exact correlation functions for this model
remarkably Ising-like: they decay exponentially with a cha
acteristic correlation length, which diverges only if bothTo
and Te vanish. Also, in theN→` limit, arbitrary ~even!
m-point correlations factorize into products of two-point co
relations, following exactly the same scheme in both
Ising and the two-temperature chain. The only key differen
is the appearance of two nontrivial amplitudes,Ao and Ae ,
which reflect the sublattice symmetry: for each spin on
odd ~even! site, the correlation function carries a factor
AAo(AAe). Of course, stationary correlations of odd num
bers of spins vanish identically, due to symmetry. In sho
the correlations of the model are entirely consistent with
Ising-like long-distance properties.

It is remarkable—and not at all immediately obvious
that these two amplitudes should be the only remnants of
large number of interactions inq($s%). There is, however, a
very simple and elegant representation@25# of the stationary
state in terms of an extended Ising model, consisting ofN
spins on a combliked51 lattice with HamiltonianHaux5
2J( isisi 112Jo(oddisis i2Je(evenisis i . Here, the spins
$si% form an auxiliary set that must be traced out in order
obtain stationary observables associated with the orig
variables$s i%. If the interactionsJ, Jo , and Je are tuned
appropriatelyin the complex plane, the s correlations of
Haux are identical to those of the two-temperature mod
Further, the exact stationary state of the two-tempera
model follows asq($s%)}Tr$si %

exp@2Haux#. Details and
generalizations will be presented elsewhere@26#.

It would of course be interesting to investigate other no
equilibrium versions of Glauber dynamics. Will the correl
tions still have a rather simple structure if a spin chain
coupled, in a translation-invariant manner, ton.2 different
temperatures? Will they still factorize, provided a sufficien
large number of amplitudes is introduced? Clearly, we s
need to cover lots of ground before even such simple n
equilibrium systems are fully understood.
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APPENDIX: STATIONARY CORRELATIONS IN FINITE
CHAINS

In this appendix, we address the correlation functions
our model on afinite periodic chain~a ring! of N sites, with
i 51,2, . . . ,N. To set the scene, we first review the equili
rium case, with uniform temperatureT. The correlation func-
tions of the Ising model on a ring are well known. Using
orderedset of arguments, 1<k1,k2,•••,km<N without
loss of generality, one finds

^sk1
•••skm

&eq50 for odd m,

^sk1
•••skm

&eq5
1

11v̄N
$v̄ (k22k1)1(k42k3)1•••1(km2km21)

1v̄N2(k22k1)2(k42k3)2•••2(km2km21)%

for even m, ~A1!

with v̄5tanh(J/kBT),1. The periodicity of the ring implies
that ^sk1

•••skm
&eq is invariant underv̄n→v̄N2n for any

integer 0<n<N. For N→`, Eq. ~A1! obviously reduces to
Eq. ~6!.

Turning to the nonequilibrium case with two temper
tures, we first assert that the stationary two-point correla
function, with 1< i , j <N, is given by

^s i s j&5
1

Z~v!
AAi Aj @v j 2 i1vN2( j 2 i )#, ~A2!

where the parameterv and the amplitudesAiP$Ae , Ao% are
simply those of Eqs.~13! and ~14!, and the normalization
factor Z(v) is given byZ(v)511vN. Clearly, ^s i s j& is
periodic with periodN. For easy reference, we fill in som
details here which are also relevant to theN→` case.

Equation ~10! is essentially a second-order differen
equation in the variablej 2 i . To find a unique solution, we
need two boundary conditions: one of these is Eq.~11! for
j 2 i 51 and the other is the requirement that for^s i s j& to
be periodic with periodN ~or, for N→`, that^s i s j& vanish
for large separations!. We therefore expect a superposition
two linearly independent solutions whose coefficients c
then be determined. Away from the boundaries, the an
^s is j&5AAiAjv

j 2 i reduces Eq.~10! to three relations, for
the combinationsi , j odd/odd, even/even, and odd/even,
spectively,

0524Ao12goAAe Ao~v1v21!,

0524Ae12geAAe Ao~v1v21!,

0524AAe Ao1~goAe1geAo!~v1v21!.

We note that the third equation is simply a linear combin
tion of the first and second, expressing the fact that there
only two amplitudes, and not three, as one might have
04613
r

n

n
tz

-

-
re
s-

sumed ~cf. Ref. @17#! based on the three types~odd/odd,
even/even, odd/even! of pair correlations. Moreover, the
symmetry underv↔v21 implies that, for each solutionv,
v21 is also a solution. Proceeding to solve the system,
find geAo5goAe and

v1v215
2

Agoge

⇒v65
1

Agego

~16A12gego!

with v151/v2 . The two rootsv6 of this quadratic equa-
tion provide us with the two anticipated linearly independe
solutions. However, to satisfy the inhomogeneous Eq.~11!
for both finite and infiniteN, we have to take a convex com
bination of the two solutions,

^s is j&5aAAiAjv2
j 2 i1bAAiAjv1

j 2 i with a1b51,
~A3!

which then leads toge Ao1go Ae5ge1go . This relation,
together with the previous identitygeAo5goAe , determines
the values of the two amplitudesAe and Ao . Demanding
periodicity for the ansatz~A3! results in a second identity fo
the two integration constantsa, b, namelyb5av2

N . Com-
paring the result with our assertion, Eq.~A2!, we identify
v[v2 andZ(v)[11v2

N . Sincev2,1, theN→` limit
is also obvious.

To treat the general case, we set up some notation.
any evenm>2, we define two auxiliary functions that de
pend on an ordered set of arguments, 1<k1,k2,•••,km
<N,

Sm
( f )~k1 ,k2 , . . . ,km!

[AAk1
Ak2

•••Akm
v (k22k1)1(k42k3)1•••1(km2km21)

5S2
( f )~k1 ,k2!S2

( f )~k3 ,k4!•••S2
( f )~km21 ,km!,

Sm
(b)~k1 ,k2 , . . . ,km!

[AAk1
Ak2

•••Akm
v2(k22k1)2(k42k3)2•••2(km2km21)

5S2
(b)~k1 ,k2!S2

(b)~k3 ,k4!•••S2
(b)~km21 ,km!

Thus, we rewrite Eq.~A2! in the form

^s i s j&5
1

Z~v!
@S2

( f )~ i , j !1vNS2
(b)~ i , j !#,

and recall thatboth S2
( f )( i , j ) and S2

(b)( i , j ) satisfy the equa-
tions of motion for theinfinite chain, i.e., Eqs.~10!, ~11!, and
~15!.

We now proceed as follows: First, we argue that bo
Sm

( f )(k1 ,k2 , . . . ,km) and Sm
(b)(k1 ,k2 , . . . ,km) solve the

homogeneous and inhomogeneous equations of mo
~9! for m-point functions on the infinite chain. Fo
Sm

( f )(k1 ,k2 , . . . ,km)5 limN→`^sk1
•••skm

&, this is immedi-
0-6
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ately obvious. ForSm
(b)(k1 ,k2 , . . . ,km), we simply need to

retrace the inductive proof from Sec. IV, since the ba
relations ~10!, ~11!, and ~15! all hold for S2

(b) , we may
replace eacĥ sk1

•••skm
& in Eqs. ~17! and ~18! by the

appropriateSm
(b) without violating any of the equalities

Since some of the equations of motion~9! for the
m-point correlations are inhomogeneous, only a conv
ys

J.

-

ev

.

04613
c

x

combination aSm
( f )(k1 ,k2 , . . . ,km)1bSm

(b)(k1 ,k2 , . . . ,km)
with a1b51 is a solution.

Finally, we have to satisfy the remaining property of t
full correlation function, namely, periodicity. Given an o
dered set of arguments 1<k1,k2,•••,km<N, we assert
that a general correlation function ofm>2 spins takes the
form
e
he two
^sk1
•••skm

&50 for odd m,

^sk1
•••skm

&5
AAk1

Ak2
•••Akm

Z~v!
$v (k22k1)1(k42k3)1•••1(km2km21)1vN2[(k22k1)1(k42k3)1•••1(km2km21)]%

5
1

Z~v!
$Sm

( f )~k1 ,k2 , . . . ,km!1vNSm
(b)~k1 ,k2 , . . . ,km!% for even m, ~A4!

which is obviously periodic on the ring. Comparing Eqs.~A1! and ~A4!, it is manifest how closely the correlations of th
nonequilibrium model mirror those of the Ising chain. Again, the only significant difference is the appearance of t
amplitudes,Ae andAo .
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